A New Efficient Spectral Galerkin Method for Singular Perturbation Problems∗
نویسندگان
چکیده
A new spectral Galerkin method is proposed for the convection-dominated convection-diffusion equation. This method employs a new class of trail function spaces. The available error bounds provide a clear theoretical interpretation for the higher accuracy of the new method compared to the conventional spectral methods when applied to problems with thin boundary layers. Efficient solution techniques are developed for the convection-diffusion equations by using appropriate basis functions for the new trial function spaces. The higher accuracy and the effectiveness of the new method for problems with thin boundary layers are confirmed by our numerical experiments. 1991 Mathematics Subject Classification. 65N35, 65L10.
منابع مشابه
Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
متن کاملMüntz-Galerkin Methods and Applications to Mixed Dirichlet-Neumann Boundary Value Problems
Solutions for many problems of interest exhibit singular behaviors at domain corners or points where boundary condition changes type. For this type of problems, direct spectral methods with usual polynomial basis functions do not lead to a satisfactory convergence rate. We develop in this paper a Müntz-Galerkin method which is based on specially tuned Müntz polynomials to deal with the singular...
متن کاملSOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD
Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملAn Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme
We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...
متن کامل